
Non-linear spin wave theory results for the frustrated  Heisenberg antiferromagnet on a

body-centered cubic lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys.: Condens. Matter 21 406004

(http://iopscience.iop.org/0953-8984/21/40/406004)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 05:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/21/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 406004 (5pp) doi:10.1088/0953-8984/21/40/406004

Non-linear spin wave theory results for the
frustrated S = 1

2 Heisenberg
antiferromagnet on a body-centered cubic
lattice
Kingshuk Majumdar1 and Trinanjan Datta2

1 Department of Physics, Grand Valley State University, Allendale, MI 49401, USA
2 Department of Chemistry and Physics, Augusta State University, Augusta, GA 30904, USA

E-mail: majumdak@gvsu.edu and tdatta@aug.edu

Received 4 June 2009, in final form 13 August 2009
Published 14 September 2009
Online at stacks.iop.org/JPhysCM/21/406004

Abstract
At zero temperature the sublattice magnetization of the quantum spin-1/2 Heisenberg
antiferromagnet on a body-centered cubic lattice with competing first and second neighbor
exchange (J1 and J2) is investigated using the non-linear spin wave theory. The zero
temperature phases of the model consist of a two sublattice Néel phase for small J2 (AF1) and a
collinear phase at large J2 (AF2). We show that quartic corrections due to spin wave
interactions enhance the sublattice magnetization in both the AF1 and the AF2 phase. The
magnetization corrections are prominent near the classical transition point of the model and in
the J2 > J1 regime. The ground state energy with quartic interactions is also calculated. It is
found that up to quartic corrections the first order phase transition (previously observed in this
model) between the AF1 and the AF2 phase survives.

1. Introduction

In recent years thermodynamic properties of frustrated
quantum Heisenberg antiferromagnets have been of intense
interest both theoretically and experimentally in condensed
matter physics [1, 2]. The phase diagram of the quantum
spin-1/2 Heisenberg antiferromagnetic (AF) model on two-
dimensional (2D) lattices with nearest neighbor (J1) and
next nearest neighbor interactions (J2) have been studied
extensively by different methods [3–22]. For the square
lattice with nearest neighbor (NN) exchange interaction only,
the ground state is antiferromagnetically ordered at zero
temperature. Addition of next nearest neighbor (NNN)
interactions breaks the AF order. The competition between the
NN and NNN interactions for the square lattice is characterized
by the frustration parameter p = J2/J1. It has been found that
a quantum spin liquid phase exists between p1c ≈ 0.38 and
p2c ≈ 0.60. For p < p1c the lattice is AF ordered whereas
for p > p2c a collinear phase emerges. In the collinear state
the NN spins have a parallel orientation in the vertical direction
and antiparallel orientation in the horizontal direction or vice
versa.

Motivated by the results for the 2D lattices some work
has been done by analytical and numerical techniques to
understand the magnetic phase diagram of three-dimensional
(3D) lattices [23–28]. Linear spin wave theory, exact
diagonalization, renormalization group, and linked-cluster
series expansions (at both zero and finite temperature) have
been utilized to study the 3D quantum spin-1/2 Heisenberg AF
on a body-centered-cubic (bcc) lattice [25, 26, 28]. It has been
found that the lattice does not have a quantum disordered phase
and a first-order phase transition from the AF phase (AF1) to
lamellar state (AF2) occurs at pc = 0.53 or J2/J1 ≈ 0.705.
The first-order nature of the phase transition from the AF1

to the AF2 phase in the model is inferred from a kink in the
ground state energy of the system. In 1D and 2D due to
reduced phase space quantum fluctuations play an important
role in determining the quantum critical points of the system at
low temperature. However, in 3D the phase space available is
greater and quantum fluctuations play a lesser role, hence the
absence of the quantum disordered phase for the BCC lattice.

In this work, we study the 3D quantum spin-1/2 AF on
a bcc lattice using the non-linear spin wave theory where we
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Figure 1. AF1 and AF2 ordered phases of the bcc lattice. (a) In the AF1 phase all A-sublattice spins point in the direction of an arbitrary unit
vector while B-sublattice spins point in the opposite direction. (b) For the AF2 phase there are two interpenetrating Néel states, each living on
the initial sublattices A and B.

consider interactions between spin waves up to quartic terms
in the Hamiltonian. We compute the effect of these higher-
order terms on the sublattice magnetization (see figure 2).
The corrections to the magnetization become important as the
classical transition point is approached. Also, our calculations
re-confirm the first-order nature of the phase transition found
in [25, 26] up to quartic interactions (see figure 3).

The paper is organized as follows. In section 2 we begin
with a brief description of the properties of the bcc lattice
relevant to our calculations. We then set up the Hamiltonian
for the Heisenberg spin-1/2 AF on the bcc lattice. The
classical ground state configurations of the model and the
different phases are then discussed. Next we map the spin
Hamiltonian to the Hamiltonian of interacting bosons and the
non-linear spin wave theory for the two phases is developed.
The sublattice magnetizations and the ground state energies
for the two phases are numerically calculated and the results
are plotted and discussed in section 3. Finally, we summarize
our results in section 4.

2. Formalism

The body-centered-cubic lattice consists of two interpenetrat-
ing, identical simple cubic lattices, each of which consists
of two interpenetrating, identical face-centered lattices. This
makes the bcc lattice a 3D bi-bipartite cubic lattice. The ba-
sis vectors of the bcc lattice connecting eight (z1 = 8) near-
est neighbors are (in units of simple cubic lattice spacing)
a1 = (1, 1,−1), a2 = (1,−1, 1), a3 = (−1, 1, 1) and the
lattice vectors connecting six (z2 = 6) next nearest neighbors
are b1 = (±2, 0, 0), b2 = (0,±2, 0) and b3 = (0, 0,±2). On
such a lattice the Hamiltonian for a spin-1/2 Heisenberg AF
with first and second neighbor interactions is

H = 1
2 J1

∑

〈i j〉
Si · S j + 1

2 J2

∑

[i j ]
Si · S j (1)

where J1 is the NN and J2 is the frustrating NNN exchange
constants. Both couplings are considered AF, i.e. J1, J2 > 0.

2.1. Classical ground state configurations

The limit of infinite spin, S → ∞, corresponds to the
classical Heisenberg model. We assume that the set of

possible spin configurations of the system is described by Si =
Sueiq·ri , where u is a vector expressed in terms of an arbitrary
orthonormal basis and q defines the relative orientation of the
spins on the lattice [29]. The classical ground state energy of
the system expressed as a function of the parameters J1 and J2

takes the form

Ek/N J1 = 1
2 S2z1[γ1k + pγ2k], (2)

with the structure factors

γ1k = cos(kx) cos(ky) cos(kz), (3)

γ2k = [cos(2kx) + cos(2ky) + cos(2kz)]/3 (4)

where N is the number of sites on the lattice. For our study
it is convenient to define the parameter of frustration p =
z2 J2/z1 J1.3

At zero temperature, the classical ground state for the bcc
lattice has two phases. In the limit of small p or J2 � J1 three
isolated minima in energy, E0/N J1 = −4S2(1 − p), occur at
the wavevectors (±π, 0, 0), (0,±π, 0) and (0, 0,±π). They
correspond to the classical two sublattice Néel state (AF1

phase) where all A-sublattice spins point in the direction of
an arbitrary unit vector n̂ while B-sublattice spins point in the
opposite direction −n̂.

In the other limit, for large p or J2 � J1, there is
a single minimum in energy, E0/N J1 = −4S2 p, at k =
(±π/2,±π/2,±π/2). In this case the classical ground state
consists of two interpenetrating Néel states (AF2 phase), each
living on the initial sublattices A and B. The two phases are
shown in figure 1.

The classical limit for the phase transition from AF1 to
AF2 for the 3D model on the bcc lattice is at the critical value
pc = 2z2/3z1 = 1/2, i.e. when J2/J1 = 2/3. This is similar
to the spin-1/2J1–J2 model on a 2D square lattice where the
critical value of pc = 1/2 or J2/J1 = 1/2.

2.2. Non-linear spin wave theory

The Hamiltonian in equation (1) can be mapped into an
equivalent Hamiltonian of interacting bosons by transforming

3 Note that p defined here differs by a factor z2/z1 with the definition of p in
the introduction.
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Figure 2. Sublattice magnetization, 〈Sα〉, is plotted versus p for AF1

and AF2 ordered phases. In the AF1 phase with increase in p the
system aligns the spins antiferromagnetically along the horizontal
and the vertical directions—thus decreasing the sublattice
magnetization. In the AF2 phase 〈Sα〉 mostly stays the same and then
shows a slight decrease (without quartic corrections) as p approaches
the critical value pc = 0.5 from above. However, with the quartic
corrections 〈Sα〉 remains almost constant at ≈0.43. In both cases
quartic corrections to the Hamiltonian of the system enhance the
magnetic order.

the spin operators to bosonic operators a, a† for the A
sublattice and b, b† for the B sublattice using the well known
Holstein–Primakoff transformations [30]

S+
Ai ≈ √

2S
(

1 − a†
i ai

4S

)
ai , S−

Ai ≈ √
2Sa†

i

(
1 − a†

i ai

4S

)
,

Sz
Ai = S − a†

i ai , S+
B j ≈ √

2Sb†
j

(
1 − b†

j b j

4S

)
,

S−
B j ≈ √

2S
(

1 − b†
j b j

4S

)
b j , Sz

B j = −S + b†
j b j .

(5)
In these transformations we have kept terms up to the order of
1/S. Next using the Fourier transforms

ai =
√

2

N

∑

k

e−ik·Ri ak, b j =
√

2

N

∑

k

e−ik·Rj bk,

the real space Hamiltonian is transformed to the k-space
Hamiltonian. The reduced Brillouin zone contains N/2 k
vectors as the unit cell is a magnetic supercell consisting of
an A site and a B site. In the following two sections we study
the cases J2 < J1 and J2 > J1 separately.

2.2.1. J2 < J1: AF1 phase. In this phase the classical ground
state is the two sublattice Néel state (see figure 1). For the NN
interaction, spins in the A sublattice interact with spins in the
B sublattice and vice versa. On the other hand, for the NNN
exchange J2 connects spins on the same sublattice, A with A
and B with B. Substituting equations (5) into (1), expanding
the radical, and restricting to terms only up to the anharmonic
quartic terms, we obtain the k-space Hamiltonian

H = H (0) + H (2) + H (4). (6)

Figure 3. Ground state energy per site, E/N J1, is plotted as a
function of the frustration parameter p = z2 J2/z1 J1 without (solid
lines) and with (dashed lines) quartic corrections for both AF1

( p < 0.5) and AF2 ( p > 0.5) ordered phases. For the bcc lattice
z1 = 8 and z2 = 6. Spin wave theory becomes unstable at the
classical transition point, i.e. p ≈ 0.5. After extrapolation (not
indicated in the figure above), we find that the two energies meet at
p ≈ 0.53 or J2/J1 ≈ 0.705. The kink in the energy at this value of p
indicates a first-order quantum phase transition from AF1 to AF2

phase.

The classical ground state energy H (0) and the quadratic terms
H (2) are

H (0) = − 1
2 N J1 S2z1(1 − p) (7)

H (2) = J1Sz1

∑

k

[A0k(a
†
kak + b†

kbk)

+ B0k(a
†
kb†

−k + a−kbk)], (8)

with the coefficients A0k and B0k defined as

A0k = 1 − p(1 − γ2k), (9)

B0k = γ1k. (10)

The quartic terms in the Hamiltonian H (4) are

H (4) = −J1

∑

〈i j〉
[a†

i ai b
†
j b j + 1

4 (ai b
†
j b j b j

+ a†
i ai ai b j + h.c.)] + 1

2 J2

∑

[i j ]
[a†

i ai a
†
j a j

− 1
4 (ai a

†
j a

†
j a j + a†

i ai ai a
†
j + h.c.) + a ↔ b]. (11)

These terms are evaluated by applying the Hartree–Fock
decoupling process [31]. In the harmonic approximation the
following Hartree–Fock averages are non-zero for the bcc
lattice Heisenberg AF:

u = 〈a†
i ai〉 = 〈b†

i bi〉 = 1

2

[
2

N

∑

k

A0k

ω0k
− 1

]
, (12)

v = 〈ai b j〉 = 〈a†
i b†

j〉 = −1

2

[
2

N

∑

k

γ1k B0k

ω0k

]
, (13)

w = 〈a†
i a j〉 = 〈b†

i b j〉 = 1

2

[
2

N

∑

k

γ2k A0k

ω0k

]
, (14)

where ω0k =
√

A2
0k − B2

0k.

3
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The contributions of the decoupled quartic terms to the
harmonic Hamiltonian in equation (8) are to renormalize the
values of A0k and B0k, which are now

Ak =
(

1 − u + v

S

)
− p[1 − γ2k]

(
1 − u − w

S

)
, (15)

Bk = γ1k

(
1 − u + v

S

)
, (16)

ωk =
√

A2
k − B2

k. (17)

The quartic correction to the ground state energy is calcu-
lated from the four boson averages. In the leading order they
are decoupled into the bilinear combinations (equations (12)–
(14)) using Wick’s theorem. The corresponding four boson
terms are

〈a†
i ai b

†
j b j〉 = u2 + v2, 〈a†

i b†
j b j b j〉 = 2uv,

〈a†
i ai ai b j〉 = 2uv, 〈a†

i ai a
†
j a j〉 = u2 + w2,

〈ai a
†
j a

†
j a j〉 = 2uw, 〈a†

i ai ai a
†
j 〉 = 2uw.

(18)

This yields the ground state energy correction from the quartic
terms,

δE (4) = − 1
2 N J1z1[(u + v)2 − p(u − w)2]. (19)

Summing all the corrections together, the ground state
energy takes the form

E/N J1 = −1

2
z1S(S + 1)(1 − p) + 1

2
z1S

[ 2

N

∑

k

ωk

]

+ 1
2 z1[(u + v)(1 − u − v) − p(u − w)(1 − u + w)]

(20)

and the sublattice magnetization 〈Sα〉 at zero temperature is
given by

〈Sα〉 = S

[
1 − 1

2S

{
2

N

∑

k

Ak

ωk
− 1

}]
. (21)

Using equations (15)–(17), we numerically evaluate
E/N J1 and 〈Sα〉. For the bcc lattice the k-sum is replaced
by an integral over the Brillouin zone [32],

2

N

∑

k

→ 1

π3

∫ π

0

∫ π

0

∫ π

0
dkx dky dkz. (22)

2.2.2. J2 > J1: AF2 phase. The classical ground state for
J2 > J1 corresponds to a four sublattice state where each of
the A and B sublattices is itself antiferromagnetically ordered
(see figure 1). For the NN exchange there are four A–A, four
B–B, and eight A–B type interactions between the sublattices.
In case of NNN exchanges there are a total of 12 A–B type
interactions. Adding all their contributions together up to the
quadratic terms the harmonic Hamiltonian takes the same form
as equation (8) with

H (0) = − 1
2 N J1 S2z1 p, (23)

A0k = 1
2 (γ1k + 2p), (24)

B0k = 1
2 (γ1k + 2pγ2k). (25)

The quartic terms in the Hamiltonian for this case are

H (4) = −J1

∑

〈i j〉
[a†

i ai b
†
j b j + 1

4 (ai b
†
j b j b j

+ a†
i ai ai b j + h.c.)] + 1

2 J1

∑

〈i j〉
[a†

i ai a
†
j a j − 1

4 (ai a
†
j a

†
j a j

+ a†
i ai ai a

†
j + h.c.) + a ↔ b] − J2

∑

〈i j〉
[a†

i ai b
†
j b j

+ 1
4 (ai b

†
j b j b j + a†

i ai ai b j + h.c.)]. (26)

These terms are decoupled and evaluated in the same way
as before. The renormalized values of the coefficients Ak and
Bk are

Ak = 1

2

[
γ1k

(
1 − u − w̄

S

)
− v + w̄

S
+ 2p

(
1 − u + v̄

S

)]
,

(27)

Bk = 1

2

[
γ1k

(
1 − u + v

S

)
+ 2pγ2k

(
1 − u + v̄

S

)]
, (28)

where

v̄ = −1

2

[ 2

N

∑

k

γ2k B0k

ω0k

]
, (29)

w̄ = 1

2

[ 2

N

∑

k

γ1k A0k

ω0k

]
. (30)

In equations (27) and (28) u, v have the same form as
in equations (12) and (13) but they are evaluated with the
coefficients A0k and B0k in equations (24) and (25). The
quartic correction to the ground state energy is

δE (4) = 1
2 N J1z1{(u − w̄)2 − (u + v)2 − p(u + v̄)2}. (31)

Combining all these corrections, the ground state energy is

E/N J1 = −1

2
z1S(S + 1)p + 1

2
z1S

[
2

N

∑

k

ωk

]

+ 1
4 z1[(v + w̄)(1 − 2u − v + w̄)

+ 2p(u + v̄)(1 − u − v̄)]. (32)

The sublattice magnetization and ground state energy are
then obtained numerically using equations (21), (27), (28),
and (32).

3. Results

In figure 2 we show the results for the sublattice magnetization,
〈Sα〉, obtained numerically from equation (21) for both AF1

and AF2 phases with (dashed line) and without (solid line)
quartic corrections. In the AF1 ordered phase or the two
sublattice Néel phase where A and B sublattice spins point
in the opposite directions, sublattice magnetization decreases
monotonically with increase in p until p ≈ 0.5. The curve
starts at ≈0.44 for p = 0 and ends at ≈0.34 for p = 0.5.
The gradual decrease in 〈Sα〉 is expected with increase in p
as increasing strength of NNN interaction J2 aligns the spins
antiferromagnetically along the horizontal and the vertical
directions. The quartic corrections produce a change in the

4
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sublattice magnetization, 〈Sα〉, which becomes significant as
one approaches the classical transition point pc = 0.5 (see
figure 2). With quartic corrections the magnetization curve
starts at ≈0.44 for p = 0 and ends at ≈0.38 for p = 0.49. At
p = 0 (no frustration) there is no quartic corrections to 〈Sα〉.
This can be observed from equations (15)–(17), (21) as the
correction factor (1 − (u + v)/S) cancels out in equation (21).
At the wavevector k = (±π/2,±π/2,±π/2) spin wave
theory calculations become unstable (at pc ≈ 0.5) since the
coefficient Ak becomes equal to Bk.

In the AF2 ordered phase or the lamellar phase with
two interpenetrating Néel states, sublattice magnetization stays
mostly flat except for a slight decrease (without quartic
corrections) as p approaches the critical value pc from above.
The curve starts at ≈0.42 for p = 1 and ends at ≈0.41 for p =
0.5. However, with quartic corrections the curve has a very
small upward turn. This upward curve has been observed in
previous numerical works on this model [25, 26]. For the AF2

phase, quartic fluctuations produce an overall enhancement of
the magnetization over the high-p values (0.5–1), but for low p
(0–0.5) with increase in frustration quantum spin fluctuations
play a dominant role, as seen in figure 2.

In figure 3 we plot the ground state energy per site,
E/N J1, for the AF1 and AF2 phases with and without quartic
corrections as a function of the frustration parameter p =
z2 J2/z1 J1. pc = 0.5 is the classical transition point where
a phase transition from the AF1 phase to the AF2 phase
occurs. The quadratic calculation agrees well with the results
of [25, 26]. The quartic corrections to the energy are shown
by the dashed lines in figure 3. At p = 0 the calculated
energy with the quartic correction is slightly lower than the
energy calculated without the quartic interaction terms. This
small decrease from the linear spin wave theory calculation is
due to the ground state energy correction, which is negative
(as seen in equation (19)) from the quartic terms (self-energy
Hartree diagrams). This trend for low p continues until
p ≈ 0.38, after which the energy with quartic corrections
becomes dominant. For large p, we find the energy with
quartic corrections to be lower than the energy calculated
without the quartic interactions in the interval ≈0.70–1. In
both the phases quantum spin fluctuations tend to maintain the
magnetic order by lowering the ground state energies. As p
approaches the critical value pc from both phases, frustration
increases, causing the ground state energies to increase. Then
1/S corrections due to spin fluctuations play a lesser role.
As mentioned in the magnetization calculation, our non-linear
spin wave analysis becomes unstable at the classical transition
point pc = 0.5. After extrapolation of the ground state energy
curve from the AF1 phase in the regime where non-linear spin
wave theory breaks down, we find that the energies from the
two phases meet at p ≈ 0.53.4 The kink at this point signals
that a first-order phase transition occurs from AF1 to AF2

phase.

4. Conclusions

In this work we have investigated the zero temperature 1/S
corrections to the sublattice magnetization and ground state
4 To avoid confusion we have not shown the extrapolated line in figure 3.

energy of a spin-1/2 Heisenberg frustrated antiferromagnet
on a bcc lattice using the framework of non-linear spin wave
theory. We have found that 1/S corrections due to spin
wave interactions cause noticeable changes to the sublattice
magnetization for both the two sublattice Néel phase (small
NNN interaction J2) and the AF2 phase or the lamellar phase
(large J2). As non-linear spin wave theory calculations become
unstable close to the classical transition point we are unable to
analyze the nature of the phase transition using this method.
We also confirm that up to quartic corrections the system
undergoes a first-order phase transition, as indicated by a kink
in the energy calculation.
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